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Since 

then vi <vl. 
If R > 0, then taking into account that (Bv, v) > 0, we obtain the inequality a, >, 0 

from the definition of a,. The proposed assertion is proved completely. Let us note that 

the sign in front of the root in (14) has been selected so that the equality ql’ = q1 =ivl 

would hold for R=O . 

Note 2. The following theorem is proved by the reasoning presented. 
Theorem. Let b be a positive definite operator in the Hilbert space R, which has 

a completely continuous inverse operator B -l. Let R be a linear operator, where B-II2 

is a completely continuous operator. Let vX2 > vz2 >, . . . > 0 be the eigennumbers of 
the operator B-l. Then the imaginary part of any eigennumber of the operator q2B -I- 
+ qR + 1 is not greater than vl, but if the operator R is nonnegative, then the real 
parts of the eigennumbers of the operator q2B -I- qR f I are nonpositive. 
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There are several approximate methods [l-4] available for solving practical problems 
having to do with oscillatory systems whose parameters vary with time. The procedure 
for analyzing such systems proposed in the present paper is based on the analogy between 

parametric and forced oscillations in a certain nominal oscillator with parameters chosen 
in a certain special way. Our approach, which closely resembles the idea behind the 

WKB ( Wentzel-Kramers-Brillouin) method [3- 51. provides increased opportunities for 
constructing effective approximate solutions of problems of the indicated class. 

1. We begin by considering the following linear second-order differential equation 
to which many problems of applied dynamics can be reduced [l and S]: 

q -I- 2n (t)q + k2 (Oq = F (4 (I.11 

The Euler substitution reduces Eq. (1.1) to the form 

b; + P2 (t) Y = Q (0, (~2 = k2 - na - n ) (2.2) 

y = q exp Ij n (t) dt] , Q =Fexp [in(t)dt] 

The solution of the homogeneous equation corresponding to Eq. (1.2) is obtainable in 
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the form 

II * = B (t) cos @ (t) (1.3) 

Here 
y*” = w - Baq CfJs u3 - (ZB’(D’ + B@“) sin@ (1.4) 

Form (1.3) enables us to introduce an additional condition, which we choose in such 
a way that the coefficient of sin 0 in (1; 4) vanishes, 

2B.Q -+ BP’ = 0 (!J = dcDl&) (1.5) 

Considering (1.5) as a differential equation with separable variables, we obtain 

B=Av%i% 6% = Q (o)t (i.S] 

Here A is an arbitrary constant, Hence, t 

y*=A Jfisz,/L? cos - (s~d:+~j (1.7) 
0 

where y is the initial phase. 
Substituting (1.7) into the original homogeneous equation, we obtain 

2” - 0.52*2 + 2Q,sezL = 2p (t) (Z==lnQ/Q*) (1.8) 

Here 62, is an arbitrary parameter having the dimensions of frequency. 
This equation corresponds to some single-mass nonlinear oscillator with alternating- 

sign “damp~g”; the role of the external perturbing force in this case is played by the 
function ZJP (b). The variable z can be regarded here merely as the analog of some 

elastic strain, so that we shall refer to the oscillator as “nominal”. If pa (t) 1s a slowly 

varying function, then the forced oscillations of the oscillator practically coincide with 
the static strain produced by the applied perturbing force ; here B 5 p. It is interesting 

to note that in this particular case expression (1; 7) has the form of the solution obtained 
for differential equation (1.2) by means of a first-order WKB approximation [4] ; it is 

also the form of the principal term of an asymptotic representation obtained by the me- 
thod of reduction to the so-called ,A-diagonal form [S J. 

The particular solution y** of nonhom~eneo~ equation (1.2) obtained by the method 
of variation of arbitrary constants on the basis of solution (1.7) is of the form 

t 

Y - **-~S~~(.)sin~0(I)--0(“)]dU 
( 
Qlo4 = ;..!& 

> 
P.9) 

0 

Making use of (1.7) and (1.9). we can express the general solution of Eq. (1.1) as 

Were 

t 
(1.10) q =: v exp r - L s n (t) dt - 0.5 (z - 20)’ I 

0 
Q1 

vocosO+vdsinO f 
s 

Fl(11) ain (0 - 9) dg (l.llf 

CD0 

PO = v (00) = YO, 

We note that u (0) is the solution of the differential equation Y” + v = F, (43) in 
which the role of “time” is played by the function 0. 

2, Let us consider the effect of a jump in pa (t) in order to investigate the dynamic 
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properties of the nominal oscillator. Let 

Pa 0) = PO2 + (PP - pfJSf q (t - to) 

where rl (t - to) is a unit step function (q= 0 for t<;s, tl = 1 .for t > to). 
Converting to the dimensionless time r = X&t, we can rewrite Eq. (1.8) as follows : 

2” - 0.52’2 + O&s* = 0.5~2 (r) (2.1) 

Equation (2.1) has an exact solution for v = const . Setting (z’)’ = r, we reduce(2.1) 
to a first-order differential equation with constant coefficients, 

dx f dir - 3 = Vf - e=z (2.2) 

The solution of this equation is reducible to the form 

2’Z-t. l/-kz’zO- (v3 + e2”) (2.3) 

We can show that h > 237 in all cases. 
In our case 8, = pot 6;1, = 0, so that the initial conditions can be written as z. = 

=in =va* 20‘ = 0. 
Setting Sk* = p1 (vl = 1), we used (2.3) to construct phase trajectories for several 

values of vo (Fig. 1). Tnese trajectories are closed curves symmetric with respect to the 
axis of abscissas ; they intersect the latter at the two points P = + In v. equidistant 

Fig. 1 

from the origin. We have also plot- 
ted some transitional curves HI&$ (2 = 
= 2 + 5) in the phase plane ; these 
curves correspond to a linear decrease 
of v* (.c) from V$ = 10 to v2 (z*) = 
=vi *=i . 

Analyzing relation (1,6). we can 
express the maximum of the variable 

amplitude B (t) as 

3 max = A exp [- 0.5 (zmin - a,)] (2.5) 

It is easy to show on the basis of 
(2.4) that the oscillation period ‘F; 
of the nominal oscillator correspond- 

ing to traversal of the entire phase 
trajectory contour is equal to 2n; 
converting to the variable t , we find 
that the period ~~esponding to the 

frequency Zp, is T, = nfpl. 

3. First let us use the above method 
to consider some typical problems 
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which will enable us to compare our results with known solutions. Let 

pz L= p*2 (1 - 2e cos wt) (3.4) 
Here (1.2) assumes the form of the Mathieu equation. 
Applying the method of harmonic linearization to nonlinear differential equation(2.1) 

and setting B* = p* v we obtain j[ _ a + a cos o t 
- 0 (3.2) 

Here a, a0 can be found from the relations 

where Jk is a Bessel function of the first kind of the imagina~ argument 2ai [7]. Analy- 
sis shows that for a < 1 the fundamental proper frequency of the nominal oscillator 

assumes values 1 < x 6 1.035. 
For example, let us determine the free oscillations for e = 0.1, o = 1.71 p* , n = 

= 0,02 p.. Making use of the tables of the functions I,, I, appearing in 171, we find from 

(3.3) that a = 0.4, a0 = 0,08. Hence, from formula (1.10) we have 
t 

q = AbXp [-- nt + 0.5a (1 - cos ot)] cos [Q, PO 
s 

exp(a cos it) dtf r] %A exp [- 0.01 r+ 

+ 0.2 (I- cos 0.855 z)] cos [O.*Z (z -i_ 0.467 sin 0.855r)j 

The curve of 4 (r) for A =* and y = 0 appears in Fig.2. 

Figure 3 iltustrates the development of reso- 
nance oscillations of the nominal oscillator 
for o = 2~. and w = p,, and also the para- 
metric resonances associated with these states. 
It is interesting to note that at the principal 
parametric resonance (o = 2~~) the rise of 

Fig. 2 oscillations of the nominal oscillator is very 

closely approximated by the relation 

2. = ep, t sinzp, t (3.4) 
which is a particular solution of the differential equation 

2” -/- Lip*% =: - J&p*2 cos 2p*t 

obtained from (1.8) by linearization for small z. 

We infer from (1. lo), (1.11) that for Q = 0 the function Q is bounded in the paramet- 

ric resonance zones if T 

s 
0 

n(t)dt>O.5IAzI (T= $) (3.5) 

Here AZ is the difference between the minima of the function z separated by the 
period 1. For n = const with allowance for (3.4) and (3.5) we have 

n > 0.5 ep. (3.8) 

This agrees with the familiar result obtained in analyzing the truncated Hill determi- 

nant fl]. 
Let us consider another typical case of periodic variation of the function p2 (t) repre- 

sented as a “rectangular sine function” with a p~sation equal to pps2. 
Since pa (t) is a piecewise-constant function. we can use the exact solution of Eq.fZ.1) 
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in tire form (2.3). Let there be an extremum z = 2, in the interval of the first half- wave 

fPS = PI*) I The value of this ex~emum can then be determ~ed from the following quad- 
ratic equation obtained from (2.3) by set- 
tingd= 0: 

e22L - (v~eMzo -+ e “) ezl f v; =1 0 (3.7) 

This extremt.sm is associated with the 
root @G = vfdcrzo 

1 (3.8) 

ff we set t;a, = peY then us = 4 and 
t x0 = 0, moreover, z1 = in vrs z= In (1 - P)* 

Let the switchings from one segment to 
the next occur at the instants of attainment 

of the extrema (Eig.4). This case (in which 
the durations of the upper and lower “half- 

waves” are strictly speaking different) is 

most hazardous from the standpoint of 
parameter& exciration, Making use of 

relations of the type (3,S). we can readily 
show that the minima q, za, as , etc., form 
an arithmetic series whose difference is 

equal to In E(1 - rcf I @ f P)f. 
Recalling that in this case the average 

period of characteristic oscillations fi. e, 

T = 2% I p*), the oscillation period T,of 
the nominal oscillator, and the period Tw Fig, 3 

of the rectangular sine function are related as 

T== 2 T, -‘_ 2 Tw (see Sect. 2), we find that 

AZ = 21n [(1 - p) / (I -b p)]. Substituting AZ 
into condition (3,5), we obtain 

Here k is the average value of the logarith- 
mic decrement per period. 

It Can be shown that similar conditfons which 
build up the oscillation of z arise not only in 
the above case, but afso for T, = jT, = 0.Q 
where j = 1, 3, 5, .., . We can then write 
condition (3.9) in the more general form 

The critical frequencies 0 T= 2n I ZY, corresponding to the principal parametric reso- 
nances lie near the values 2p* I i. If we retain the first term of the series in (3,lO) for 
I= 1 s then the result also coincides with the approximate condition obtained in anatyz- 
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II afj (4 I IYf”) + II cfj (4 II CYfl = O (i, i = 1, . . . , S) (5.1) 

where 11 eij 0) 11, II Qj (Q If are the matrices of the inertial and elastic coefficients ; 8 is 
the number of degrees of freedom. 

We assume that for any z the formal frequency 
equation obtained for “frozen” coefficients has 
; simple roots. The solution gt can be obtained 

Fig. 5 

in series form, # 

?li = 2 &r(t) cf)s@, @) (5.2) 
TZl 

Satisfying conditions of the form (1.5), we can 

air = -4, 
A rr ) - (5.3) 

Here the function CZi, (t) characterizes the 

variable oscillation mode. 
If Uij (t) and cu (t) are certain piecewise-con- 

stant functions, then, substituting (5.3) into( 5.1) 

and ignoring the wivial solution yi zz 6, we 
carry out some transformations to obtain 

zr -r . . - 6 52 ‘2 + 2$-J zeazr *r = 2P,2 (t) (zp = in (~~~~*~)) (r = 1, :. . (, s) (5.4) 
where Q,, is an arbitrary parameter. 

The function PrZ (t) is defined as the root of the equation 

det II cfj (t) - atj (0 PB (9~” II = 0 (5.5) 

Similarly, 9, (t) and Fr ft) are also related in a broader class of problems if 

This practically common case occurs when the functions otr (f) vary slowly or have 
a small pulsation depth. 

Equation (5.4) is of the same form as (1.8) and corresponds to a independent nominal 

oscillators which vary only in their “probation”, Hence under these assumptions the 
series of results formulated in Sects, 2 and 3 can be used for analyzing system (5.1). 
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A rotating-phase autonomous system with a deviating argument is investigated, A scheme 
of successive approximations for the exact solution over an infinite time interval is con- 

structed ; sufficient conditions for the existence of a steadystate solution are derived. 
Such systems occur frequently in the theory of nonlinear vibrational-rotational motions 
in systems whose parameters vary within a narrow range. 

Let us construct the stationary, i, e. steadystate, solutions of a real system of the form 

dE I & =1. Ef (E, ET, $> q,, Ef (E:,=E(t---Ii 

@/dt - @ (E, E-1 i- EF (E, %,, ‘Jt, Ji,, 8) (9, = $ (t - 41 (1) 

Here t e (- 00, w) is the time, E e [- aO, e,] a small parameter, E a vector vari- 

able whose values lie in some neighborhood of the point &*, J, e (-- 00, 00) the scalar 

phase,and z E (- M, 00) a constant. 
We can construct the solution by the method of successive approximations [lj, making 

use of the fact that if system (1) has a solution E (t), 9 (t) for all t s then it also has a 

family of solutions E (t -i- B), 9 (t + B), where 6 is an arbitrary constant. The value 
of the phase 9 can therefore be chosen arbitrarily for some instant to . For example, 

we can set it equal to zero in order to simplify our expressions. To avoid secular terms 
in system (1) we introduce the new independent variable 8 such that 

t - b@ = s(1 + ah), t = ‘p (1 + efLf 
This yields the system 

dE i ds = a (1 -1- eh) f (E, E,, ‘/‘, $,s) 

d$ / ds = (1 + eh) io (E, .!$,P) + EF (Et Erpr%llqz, E)l 

where h is some constant which we choose in such a way that the solution of the per- 
turbed system in s has the “unperturbed” period To. 

Assuming that the functions f, o have par$ial derivatives with respect to all their argu- 

ments and that these derivatives together with I; satisfy the Lipschitz condition in the 
above domain, we make the substitutions 

E = E, -j- El, *=@!@+@+a!, (E,, 9 = const) 

to obtain the system 


